skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bai, Yongsheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pavement surface distresses are analyzed by transportation agencies to determine section performance across their pavement networks. To efficiently collect and evaluate thousands of lane-miles, automated processes utilizing image-capturing techniques and detection algorithms are applied to perform these tasks. However, the precision of this novel technology often leads to inaccuracies that must be verified by pavement engineers. Developments in artificial intelligence and machine learning (AI/ML) can aid in the progress of more robust and precise detection algorithms. Deep learning models are efficient for visual distress identification of pavement. With the use of 2D/3D pavement images, surface distress analysis can help train models to efficiently detect and classify surface distresses that may be caused by traffic loading, weather, aging, and other environmental factors. The formation of these distresses is developing at a higher rate in coastal regions, where extreme weather phenomena are more frequent and intensive. This study aims to develop a YOLOv5 model with 2D/3D images collected in the states of Louisiana, Mississippi, and Texas in the U.S. to establish a library of data on pavement sections near the Gulf of Mexico. Images with a resolution of 4096 × 2048 are annotated by utilizing bounding boxes based on a class list of nine distress and non-distress objects. Along with emphasis on efforts to detect cracks in the presence of background noise on asphalt pavements, six scenarios for augmentation were made to evaluate the model’s performance based on flip probability in the horizontal and vertical directions. The YOLOv5 models are able to detect defined distresses consistently, with the highest mAP50 scores ranging from 0.437 to 0.462 throughout the training scenarios. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Robust Mask R-CNN (Mask Regional Convolutional Neural Network) methods are proposed and tested for automatic detection of cracks on structures or their components that may be damaged during extreme events, such as earthquakes. We curated a new dataset with 2,021 labeled images for training and validation and aimed to find end-to-end deep neural networks for crack detection in the field. With data augmentation and parameters fine-tuning, Path Aggregation Network (PANet) with spatial attention mechanisms and High- resolution Network (HRNet) are introduced into Mask R-CNNs. The tests on three public datasets with low- or high-resolution images demonstrate that the proposed methods can achieve a big improvement over alternative networks, so the proposed method may be sufficient for crack detection for a variety of scales in real applications. 
    more » « less
  3. This paper presents a few comprehensive experimental studies for automated Structural Damage Detection (SDD) in extreme events using deep learning methods for processing 2D images. In the first study, a 152-layer Residual network (ResNet) is utilized to classify multiple classes in eight SDD tasks, which include identification of scene levels, damage levels, and material types. The proposed ResNet achieved high accuracy for each task while the positions of the damage are not identifiable. In the second study, the existing ResNet and a segmentation network (U-Net) are combined into a new pipeline, cascaded networks, for categorizing and locating structural damage. The results show that the accuracy of damage detection is significantly improved compared to only using a segmentation network. In the third and fourth studies, end-to-end networks are developed and tested as a new solution to directly detect cracks and spalling in the image collections of recent large earthquakes. One of the proposed networks can achieve an accuracy above 67 .6% for all tested images at various scales and resolutions, and shows its robustness for these human-free detection tasks. As a preliminary field study, we applied the proposed method to detect damage in a concrete structure that was tested to study its progressive collapse performance. The experiments indicate that these solutions for automatic detection of structural damage using deep learning methods are feasible and promising. The training datasets and codes will be made available for the public upon the publication of this paper. 
    more » « less